- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Juanhui (4)
-
Ma, Yao (4)
-
Tang, Jiliang (4)
-
Shomer, Harry (3)
-
Wu, Bo (2)
-
Yin, Dawei (2)
-
Aggarwal, Charu (1)
-
Cheng, Suqi (1)
-
Ding, Jiayuan (1)
-
Mao, Haitao (1)
-
Shah, Neil (1)
-
Wang, Shuaiqiang (1)
-
Wang, Yiqi (1)
-
Zeng, Wei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Li, Juanhui; Zeng, Wei; Cheng, Suqi; Ma, Yao; Tang, Jiliang; Wang, Shuaiqiang; Yin, Dawei (, International ACM SIGIR Conference on Research and Development in Information Retrieval)Query understanding plays a key role in exploring users’ search intents. However, it is inherently challenging since it needs to capture semantic information from short and ambiguous queries and often requires massive task-specific labeled data. In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks because they can extract general semantic information from large-scale corpora. However, directly applying them to query understanding is sub-optimal because existing strategies rarely consider to boost the search performance. On the other hand, search logs contain user clicks between queries and urls that provide rich users’ search behavioral information on queries beyond their content. Therefore, in this paper, we aim to fill this gap by exploring search logs. In particular, we propose a novel graph-enhanced pre-training framework, GE-BERT, which leverages both query content and the query graph to capture both semantic information and users’ search behavioral information of queries. Extensive experiments on offline and online tasks have demonstrated the effectiveness of the proposed framework.more » « less
-
Li, Juanhui; Shomer, Harry; Ding, Jiayuan; Wang, Yiqi; Ma, Yao; Shah, Neil; Tang, Jiliang; Yin, Dawei (, The 61st Annual Meeting of the Association for Computational Linguistics)Knowledge graphs (KGs) facilitate a wide variety of applications. Despite great efforts in creation and maintenance, even the largest KGs are far from complete. Hence, KG completion (KGC) has become one of the most crucial tasks for KG research. Recently, considerable literature in this space has centered around the use of Message Passing (Graph) Neural Networks (MPNNs), to learn powerful embeddings. The success of these methods is naturally attributed to the use of MPNNs over simpler multi-layer perceptron (MLP) models, given their additional message passing (MP) component. In this work, we find that surprisingly, simple MLP models are able to achieve comparable performance to MPNNs, suggesting that MP may not be as crucial as previously believed. With further exploration, we show careful scoring function and loss function design has a much stronger influence on KGC model performance. This suggests a conflation of scoring function design, loss function design, and MP in prior work, with promising insights regarding the scalability of state-of-the-art KGC methods today, as well as careful attention to more suitable MP designs for KGC tasks tomorrow. Our codes are publicly available at: https://github.com/Juanhui28/Are_MPNNs_helpful.more » « less
-
Shomer, Harry; Ma, Yao; Li, Juanhui; Wu, Bo; Aggarwal, Charu; Tang, Jiliang (, Association for Computational Linguistics)
An official website of the United States government

Full Text Available